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In the extratropics, climate is the main factor controlling rates of 
plant development, owing to the plants’ intrinsic reliance on tem-
perature1. As a result, changes in vegetation phenology have been 

one of the first-observed effects of climate change2, with warming 
temperatures advancing reproductive development of vegetation3. 
This results in temporal shifts of bottom-up ecosystem processes 
such as the alteration of habitat-use strategies of plant-dependent 
fauna4, and can trigger the complete decoupling of trophic inter-
actions5. In addition to being an indicator of climate change, phe-
nology provides fundamental insights into ecosystem function 
across scales, from individuals to landscapes6,7. However, there 
is no detailed knowledge of how future climate change will affect 
the scale and interaction of phenological processes8. An observa-
tion framework is needed that can accurately capture phenological 
dynamics in both space and time.

Time-series analyses of remote-sensing imagery in the optical 
wavelengths now routinely deliver land-surface phenology metrics 
on a global scale9, including observations of spring onset, autumn 
senescence and seasonal maxima10. However, these metrics are typi-
cally inferred from spectral indices that integrate the overall ‘green-
ness’ of an image pixel, and are generally too coarse to be linked 
to discrete, species-specific phenophases such as fruiting11. These 
limitations are further exacerbated in forests, where overstory cano-
pies both influence the development of plants in the understory and 
mask them from detection by spaceborne instruments. Considering 
that forests harbour two-thirds of Earth’s terrestrial biodiver-
sity12, De Frenne and Verheyen13 recently stressed the importance 
of focusing global attention to the lack of microclimate analyses 
beneath the canopy.

We used growing degree days (GDDs), the well-known horti-
cultural principle linking plant development to thermal units of 
temperature accumulation, as an instrument for observing forest 
understory phenology. Using satellite-derived estimates of under-
story temperature (Tust), we developed a monitoring framework that 

generates reliable daily maps of species-specific phenophase pro-
gression in near-real time. Here, we demonstrate this framework 
using the Canada buffaloberry (Shepherdia canadensis), a fruiting 
perennial shrub that is widespread in western North America. In 
addition to enabling contemporary monitoring of forest understory 
species, the mechanistic, thermal foundation of our framework also 
enables us to predict the phenological response of understory plants 
under future climate scenarios. As an example, we examine how  
S. canadensis phenology might respond to an end-of-century warm-
ing of +3.3 °C in our study region, on the basis of the IPCC Fifth 
Assessment Report (AR5) representative concentration pathway 
(RCP) 4.5.

Tracking phenology from plants to landscapes
The reliability of using temperature accumulations as a common  
reference for phenological development in plants is long estab-
lished14. This consistency is largely due to the principle that the 
amount of heat required to advance from one life cycle stage to the 
next generally does not change15. Thermal time is often expressed 
in GDDs, which are much better for predicting phenological events 
than other approaches such as time‐of‐year or number‐of‐days16. 
Plants have unique minimum base temperatures below which 
physiological development does not occur. Once this threshold is 
determined, it is possible to establish a reference point to commence 
GDD accumulations (AGDD)17. When the threshold has been sur-
passed, rates of development increase approximately linearly as a 
function of air temperature18.

We assessed the spatiotemporal variability of reproductive devel-
opment of S. canadensis. This fruiting dioecious shrub is common 
throughout the southern Rocky Mountains of Canada, and provides 
critical nutrition for a wide variety of foraging species. Accordingly, 
our 125,000 km2 study area was established on the range extent of 
a threatened population of grizzly bears (Ursus arctos), for which 
S. canadensis is an essential food source19 (Fig. 1). Phenology 

Advances in phenology are conserved across  
scale in present and future climates
David N. Laskin   1*, Gregory J. McDermid   1, Scott E. Nielsen   2, Shawn J. Marshall1, 
David R. Roberts   1 and Alessandro Montaghi1

Warming temperatures are advancing the timing of seasonal vegetation development in the extratropics, altering plant–animal 
interactions and increasing the risk of trophic asynchrony. Forest understories are critical yet under-observed ecosystems in 
which phenological patterns are both altered and obscured by overstory trees. We address the challenge of observing phe-
nological dynamics in the understory by exploiting the physiological relationship between plant phenology and temperature 
accumulation, a horticultural principle we show to be preserved across spatial scales through a combination of field and growth-
chamber observations. These observations provide the foundation for a spaceborne thermal-observation framework, which can 
trace the discrete phenophases of forest understory plants in near-real time. The thermal basis of this framework also enables 
the prediction of understory phenology for future climates, which we demonstrate here using Shepherdia canadensis, a wide-
spread fruiting shrub of western North America that has important trophic connections to frugivores. Our approach enables 
researchers to assess the regional-scale impacts of climate change on bottom-up forest ecosystems and to monitor emerging 
trophic mismatches.

NATuRE CLiMATE ChANGE | VOL 9 | MAY 2019 | 419–425 | www.nature.com/natureclimatechange 419

mailto:dnlaskin@ucalgary.ca
http://orcid.org/0000-0002-2174-7256
http://orcid.org/0000-0001-8079-3730
http://orcid.org/0000-0002-9754-0630
http://orcid.org/0000-0002-3437-2422
http://www.nature.com/natureclimatechange


Articles NATure ClimATe ChANge

observations were made with time-lapse cameras in 45 forested 
plots and corroborated by regular field visits20. Twenty-nine of these 
plots were 250 m × 250 m (6.25 ha), in an attempt to unify observa-
tion scales on the ground with the Moderate Resolution Imaging 
Spectroradiometer (MODIS) satellite imagery21.

We derived the AGDD requisite for each phenophase using the 
developmental stages identified in the in situ time-lapse imagery 
and associated Tust field measurements. AGDDs were established 
on a developmental base temperature (tb) that we estimated to be 
0 °C ± 0.6 °C (tb = 0 °C)22. Landscape-scale phenology maps were 
created for the following year by summing the thermal require-
ments in each pixel of a daily average Tust image stack (Fig. 2). 
This daily Tust imagery was derived from land-surface temperature 
(LST) measurements collected by the MODIS sensor overhead. The 
maps successfully predicted the complete incremental progression 
of reproductive phenology of S. canadensis in 16 validation loca-
tions. There was no significant difference between observations of 
phenophase timing in the landscape-scale maps and observations 
of individual plants on the ground (t = −0.08; P = 0.937; correlation 
coefficient = 0.986). The occurrence of fully ripe fruit was accu-
rately predicted with a mean absolute error (MAE) of ±2.4 d on the 
individual plants (Fig. 3a). Of the 12 reproductive phenophases, the 
average start dates of the first 10 were estimated across the study 
area to an average of 1.4 d and the final two senescing phenophases 
at 3.3 d (Fig. 3b). In general, the maps have a very slight bias to 
underpredict development preceding fruit emergence, and to over-
predict the timing of fruit maturation. For example, the average date 
of full-fruit maturation observed in situ was 31 July 2012, whereas 
the maps estimated this date to be 1 August 2012.

Tust can be predicted from satellite despite trees and clouds
Our phenology mapping framework differs from existing approaches 
in that it uses thermal imagery to track the temperature-accumulation 

patterns of specific plant species in forest understories. We derived 
Tust maps to discern fine microclimatic characteristics that are not 
available from interpolated weather-station data23. The MODIS sen-
sor does not measure air temperature directly, but rather the skin 
temperature (emissivity) of the surfaces visible to the satellite in 
the form of LST24. Surface air temperature is then derived using a 
supplementary estimation technique25. However, microclimates 
within forests are out of view of the sensor, as canopies form rela-
tively opaque boundaries between the understory and supra-can-
opy air masses. As a result, canopy-modified air temperatures in 
the understory drive phenological processes at different rates than 
those beyond the forest26.

We were able to produce instantaneous spaceborne measures 
of Tust (at time of satellite overpass) to within ±1.4°C of in situ 
measurements (R2 = 0.89) using empirical models that incorpo-
rate compositional and structural canopy metrics27. To provide 
a thermal basis for broad-scale phenology maps, these instanta-
neous Tust plot-scale estimates were extended to make spatially 
continuous maps of daily average Tust. Persistent cloud cover 
often created large spatial and temporal gaps in our observation 
records28. On average, only 23% of the plot overpasses occurred 
during clear-sky conditions (n = 4,153). A common solution to 
mitigate data loss is to aggregate daily LST imagery into 8-day 
and 16-day composites. However, these composite periods are 
often too temporally coarse to distinguish short-lived phenologi-
cal events29. Capturing the sudden appearance of phenophases 
like fruit-ripening requires daily observations30. We use gener-
alized linear models to estimate average daily Tust from each of 
the four daily MODIS overpasses to within ±1.5 °C (R2 ≈ 0.87). 
By combining the cloud-free regions from each overpass, usable 
pixel coverage increased considerably31. Remaining cloud gaps 
were filled using a Gaussian-weighted temporal interpolation32. 
The final daily average Tust images were enhanced to 250 m  
spatial resolution33 and were accurate to ±2.2 °C in all weather  
conditions, including times of persistent cloud cover.

Predicting understory phenology in future climate scenarios
We used the same method of temperature accumulation to fore-
cast the effects of climate warming by integrating a future ther-
mal anomaly into the Tust maps. The moderate end-of-century 
warming scenario RCP4.5 was downscaled to a 1-km resolution 
anomaly surface for the extent of the study area34. The regional 
anomaly averaged 3.3 °C (global likely range is 1.7–3.2 °C), and was 
added to the present-day Tust image stack to produce projections of  
2071–2100 phenology (hereafter referred to as 2080s). Warming 
is also expected to alter the distribution of plant habitat as plants 
exploit new niches made available by a changing climate35. Therefore, 
we produced habitat-distribution models for both the present day 
(1961–1990) and the 2080s to spatially mask the phenology maps. 
To assess phenological timing at the landscape level, we used peak 
coverage, based on the date when the maximum number of image 
pixels transition to the next phenophase. Parmesan36 highlights 
the difficulty measuring phenology in a generalized way; average  
dates do not really work, hence peak coverage is deemed more  
ecologically contextual.

Our maps forecast a significant advance in all S. canadensis 
phenophases, including a 13-day shift in florescence and a 19-day 
advance in the development of fully ripe berries (Fig. 4). The rate of 
ripening increases with elevation; the subalpine regions of the study 
area are projected to experience a full 37-day shift. We predict the 
range of the S. canadensis habitat to decline by 8% (−4,510 km2)— 
a sizable decrease considering the time horizon (60 to 80 years). 
However, there will be an increase in ripe berries available during 
peak coverage (+4,150 km2). To control for modifiable areal unit 
problems and focus solely on the impact of warming, we also mea-
sured peak coverage at the present habitat extent (Fig. 5).
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Fig. 1 | The extent of the study area in the Rocky Mountains of western 
Alberta, Canada. The study area encompasses the entirety of the grizzly 
bear (U. arctos) range in the province. Forty-five understory phenology 
observation plots were distributed throughout a variety of forest types and 
elevation profiles.
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Fig. 2 | The complete sequential phenology of S. canadensis. The observation framework outputs a daily chronology of reproductive development for 
each discrete phenophase from closed bud to dispersal at 250-m resolution, shown here in 5-day increments for the present day (2012). The example 
highlighted phenophases indicate the timing of their peak spatial coverage within the study area.
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Fig. 3 | Variability in phenology map predictions of phenophase start dates for individual plants. a, The MAE of map predictions of phenophase 
start dates of individual plants observed in situ. Coloured points represent the error (in days) of the in situ observations (x axis) for each respective 
phenophase, with bootstrapped 95% confidence intervals. b, The distribution of start dates predicted by the phenology maps versus start dates 
observed in situ (dotted centre line shows in situ start dates). Diamonds indicate the observed study area average; box edges denote upper and lower 
quartiles; whiskers, maximum and minimum map estimates within 1.5× the interquartile range; outliers shown beyond whiskers; bold centre line 
indicates median map estimate.
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To evaluate our model predictions, we performed growth-cham-
ber warming experiments to assess future phenological response 
at the scale of the individual plant. These experiments establish 
an observable temporal advance to compare with the hypothetical 
future phenology expressed in the maps. One bank of Conviron fully 
enclosed climate-controlled growth chambers was programmed 
to reflect present-day temperature within the study area (30-year 
normal); another bank was used to approximate the downscaled 
RCP4.5 warming scenario within our study area (mean +3.3 °C). 
After two seasonal observations, the plants under the warming 
scenario experienced an average of 12-day advance in florescence 
and a 35-day advance in ripening. These shifts are similar to those 
forecast in the mapped projections: 13 d for florescence and 37 d for 
ripening at high elevations (Fig. 6).

Discussion
Until now, the functionality of satellite-derived AGDD for moni-
toring understory phenology has been relatively unexplored. Our 
thermal-mapping framework was highly effective in pinpoint-
ing stages of understory plant development and demonstrates the 
strong, scale-invariant link between air temperature and plant phys-
iology. Most land-surface phenology models infer developmental 
timing from a seasonal curve based on satellite-derived spectral 
indices (for example, ref. 10). These curves work well for dealing 
with cloud-punctuated datasets and for detecting the pronounced 
spectral shifts associated with greenup and senescence. They are, 
however, less sensitive to discrete changes in mid-season phenology, 
especially beneath the forest canopy. The incorporation of thermal 
time (AGDD) in recent studies, including ours, is rapidly improv-
ing estimates of phenological timing. For example, Crimmins et al.37 
and Melaas et al.38 used Daymet daily 1-km gridded meteorological 
surfaces to produce broad-scale estimates of spring leaf emergence 
and bloom to within 5 d for a number of forest species. However, 
the focus of these studies remains on spring onset, with the excep-
tion of Crimmins et al.37, whose ripe-fruit estimates did not meet 

their model criteria of MAE ≤10 d. The Daymet temperature grids 
are interpolated from meteorological stations; this process inher-
ently introduces spatial uncertainty as the distance between stations 
can be substantial23. Izquierdo-Verdiguier et al.39 state that satellites 
overcome these interpolation issues, but meteorological station data 
are easier to relate to phenology observations on the ground—our 
approach appears to effectively bridge this gap.

The major assumption of our framework is that temperature 
controls the rate of phenological development in plants. This is 
largely true in regions with marked seasonal climates40. However, we 
found the thermal approach to be limited in estimating late-season 
phenophases. The timing of overripe berries and their dispersal is 
influenced by factors other than temperature, and is therefore dif-
ficult to predict with our approach. Whereas temperature will affect 
the rate at which berries desiccate, dispersal can occur from preda-
tion or simply a gust of wind. Predictions of late-season phenology 
could be improved by incorporating chilling degree days (CDDs). 
Yu et al.41 found late-season CDDs to be an important predictor 
of leaf colouration and senescence, but many of the physiological 
controls of senescence remain ambiguous and are likely to extend 
beyond air temperature11,42.

Our framework proved to be reliable despite the omission of other 
common attributes such as soil quality, available nutrients, photope-
riod and humidity—which are all known to affect plant phenology. 
This simplicity is one of the main benefits of our approach, although 
further refinement with other factors is possible. For instance,  
Liang et al.43 found that understory plant phenology could be 
strongly affected by day-to-day changes in humidity. Though we did 
find a significant difference in in situ plot humidity across the study 
area (2011: F = 52.1, P < 0.01; 2012: F = 340.8, P < 0.01), the practical 
variance in humidity ranged only between 3% and 10%. Although 
seemingly minor, these differences could affect rates of plant devel-
opment. In future, site moisture derived from the MODIS thermal 
bands could be incorporated into the framework44, particularly in 
future-scenario modelling, as most projections predict increased 
precipitation in the mid-latitudes45.

Our observations provide a compelling, mechanistic strategy for 
exploring hypothetical future phenology patterns. With no way to 
truly validate future events, growth-chamber simulations worked in 
proxy to effectively test the sensitivity of S. canadensis to warming, 
operating on the same thermal foundation as the phenology maps. 
Although incorporating the RCP4.5 scenario resulted in marked 
shifts in the future phenology and distribution of S. canadensis,  
it is unlikely that these projected changes, over this timescale, 
would result in the collapse of trophic linkages on which these 
forest ecosystems depend. Nonetheless, such projections present 
concern regarding general trophic synchrony, which could con-
sequently affect how frugivores use the landscape. For the grizzly 
bear, the apex omnivore in the study area, a nearly three-week pro-
jected advance in fruit ripening will produce a larger gap between  
the availability of this critical nutrition source and the time of hiber-
nation. This would potentially lead to food deprivation as grizzly 
fecundity is highly linked to pre-hibernation body-fat percentage46.  
There is also a risk of phenological synchronization, where advanc-
ing availability of berries may begin to overlap with another pre-
ferred ephemeral nutrition source. For instance, grizzly bears in 
coastal Alaska are abandoning their role as critical nutrient dispers-
ers in forest ecosystems as they are opting to eat berries over salmon 
owing to the recent harmonization of the phenologies of these two 
food sources47.

There are many benefits to forecasting the impacts of climate 
change on phenology, but there are also advantages to looking to 
the past. Izquierdo-Verdiguier et al.39 used Daymet and the cloud-
computing capacity of Google Earth Engine to model 36 years 
of spring phenological indices over the conterminous United 
States. The temporal depth of this time series was able to resolve  
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Fig. 4 | Shift in the peak spatial coverage of ripe fruit between the present 
day and the RCP4.5 scenario. a,b, Highlighted regions show the extent 
of peak spatial coverage of fully ripe fruit, which represents the height of 
available nutrition for frugivores at the landscape-scale for the present 
day (2012; a) and the forecast 2080s extent (b). Under the RCP4.5 
scenario there is a predicted 19-day advance in the development of fully 
ripe fruit, accompanied by an 8% decline in S. canadensis habitat overall 
(−4,510 km2). There is also a predicted increase of 4,150 km2 in peak 
coverage during this same phenophase over the present day.
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long-term regional trends in spring onset, illustrating the poten-
tial for similar processing of the MODIS LST archive, albeit for 
only half this duration. Many recent studies have used the USA 

National Phenology Network (USA-NPN), which now has 15 mil-
lion observation records for over 1,200 species with correspond-
ing GDD requirements (for example, refs. 37–39). Our framework is 
extensible to the USA-NPN and other global networks containing  
species with defined phenology, mainly in distinctly seasonal north-
ern temperate, boreal and Arctic regions. For example, we tested this 
extensibility with a second species, Hedysarum alpinum, a perennial 
forb with a large taproot having a radically different developmen-
tal physiology to S. canadensis. As with the analysis presented here,  
we found no significant difference in the timing of predicted  
H. alpinum phenology and in situ observations (t = −0.058; 
P = 0.954; correlation = 0.964). High-latitude climates are cur-
rently experiencing rates of warming two to three times the global  
average48, and require reliable projections of plant community 
change critical to conservation and management in these areas.

Increasingly efficient access to MODIS LST imagery makes 
investigations into ecosystem phenology patterns and dynamics a 
timely benefit during a period of rapid environmental change49. Our 
remote-sensing approach can functionally examine trends in phe-
nological changes in response to interannual seasonal differences 
as well as intra-season phenological progress to anticipate critical 
ecosystem events. The mapping framework provides near-real-time 
extensibility to choose any day of the season and determine the 
precise spatial extent of any phenophase, particularly with MODIS 
LST data often publicly available only a few days after acquisition50. 
Further, combining this methodology with high processing effi-
ciency and extensive image archives, such as those within Google 
Earth Engine, will at once expand the global extensibility of this 
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framework. Maps are conventionally static and unchanging, but 
ecosystem processes are not.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41558-019-0454-4.

Received: 25 March 2018; Accepted: 11 March 2019;  
Published online: 15 April 2019

References
 1. Reeves, P. H. & Coupland, G. Response of plant development to environment: 

control of flowering by day length and temperature. Curr. Opin. Plant Biol. 3, 
37–42 (2000).

 2. Root, T. L. et al. Fingerprints of global warming on wild animals and plants. 
Nature 421, 57–60 (2003).

 3. Parmesan, C. Ecological and evolutionary responses to recent climate change. 
Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

 4. Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change  
on the distribution of species: are bioclimate envelope models useful?  
Glob. Ecol. Biogeogr. 12, 361–371 (2003).

 5. Kerby, J. T., Wilmers, C. C. & Post, E. in Trait-Mediated Indirect Interactions: 
Ecological and Evolutionary Perspectives (eds Ohgushi, T. et al.) 508–525 
(Cambridge Univ. Press, 2012).

 6. Post, E. S. & Inouye, D. W. Phenology: response, driver, and integrator. 
Ecology 89, 319–320 (2008).

 7. Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and 
trophic levels. Nature 535, 241–294 (2016).

 8. Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions 
of climate change and their implications for biodiversity. Science 344,  
1247579 (2014).

 9. Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional 
change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).

 10. Zhang, X. Y. et al. Monitoring vegetation phenology using MODIS.  
Remote Sens. Environ. 84, 471–475 (2003).

 11. Nijland, W., Bolton, D. K., Coops, N. C. & Stenhouse, G. Imaging  
phenology: scaling from camera plots to landscapes. Remote Sens. Environ. 
177, 13–20 (2016).

 12. Lindenmayer, D., Franklin, J. & Fischer, J. General management principles 
and a checklist of strategies to guide forest biodiversity conservation.  
Biol. Conserv. 131, 433–445 (2006).

 13. De Frenne, P. & Verheyen, K. Weather stations lack forest data. Science 351, 
234–234 (2016).

 14. Hoover, M. W. Some effects of temperature on the growth of southern peas. 
Proc. Am. Soc. Hortic. Sci. USA 66, 308–312 (1955).

 15. Reáumur, R. A. F. Observations du thermomètre, faites à Paris pendant 
I’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’Isle de 
France, à Alger et en quelques-unes de nos isles de l’Amérique. Mem. Acad. 
Sci. Paris 545–576 (1735).

 16. Cesaraccio, C., Spano, D., Duce, P. & Snyder, R. L. An improved model for 
determining degree-day values from daily temperature data. Int. J. 
Biometeorol. 45, 161–169 (2001).

 17. Miller, P., Lanier, W. & Brandt, S. Using Growing Degree Days to Predict Plant 
Stages (Montana State Univ., 2001).

 18. Snyder, R. L., Spano, D., Cesaraccio, C. & Duce, P. Determining degree-day 
thresholds from field observations. Int. J. Biometeorol. 42, 177–182 (1999).

 19. Hamer, D. & Herrero, S. Grizzly bear food and habitat in the front ranges of 
Banff National Park, Alberta. Bears Biol. Manag. 7, 199–213 (1987).

 20. Laskin, D. N. & McDermid, G. J. Evaluating the level of agreement between 
human and time-lapse camera observations of understory plant phenology at 
multiple scales. Ecol. Inform. 33, 1–9 (2016).

 21. Misra, G., Buras, A. & Menzel, A. Effects of different methods on the 
comparison between land surface and ground phenology—a methodological 
case study from south-western Germany. Remote Sens. 8, 753 (2016).

 22. Yang, S. S., Logan, J. & Coffey, D. L. Mathematical formulas for calculating 
the base temperature for growing degree-days. Agric. For. Meteorol. 74,  
61–74 (1995).

 23. Neteler, M., Roiz, D., Rocchini, D., Castellani, C. & Rizzoli, A. Terra and Aqua 
satellites track tiger mosquito invasion: modelling the potential distribution of 
Aedes albopictus in north-eastern Italy. Int. J. Health Geogr. 10, 49 (2011).

 24. Sun, Y. J. et al. Air temperature retrieval from remote sensing data based on 
thermodynamics. Theor. Appl. Climatol. 80, 37–48 (2005).

 25. Niclos, R., Valiente, J. A., Barbera, M. J. & Caselles, V. Land surface air 
temperature retrieval from EOS-MODIS images. IEEE Geosci. Remote Sens. 
Lett. 11, 1380–1384 (2014).

 26. De Frenne, P. et al. Microclimate moderates plant responses to macroclimate 
warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).

 27. Laskin, D. N., Montaghi, A., Nielsen, S. E. & McDermid, G. J. Estimating 
understory temperatures using MODIS LST in mixed cordilleran forests. 
Remote Sens. 8, 658 (2016).

 28. Jang, K., Kang, S., Kimball, J. S. & Hong, S. Y. Retrievals of all-weather  
daily air temperature using MODIS and AMSR-E data. Remote Sens. 6, 
8387–8404 (2014).

 29. Coops, N. C., Duro, D. C., Wulder, M. A. & Han, T. Estimating afternoon 
MODIS land surface temperatures (LST) based on morning MODIS overpass, 
location and elevation information. Int. J. Remote Sens. 28, 2391–2396 (2007).

 30. Crimmins, M. A. & Crimmins, T. M. Monitoring plant phenology using 
digital repeat photography. Environ. Manage. 41, 949–958 (2008).

 31. Huang, R. et al. Mapping of daily mean air temperature in agricultural 
regions using daytime and nighttime land surface temperatures derived from 
TERRA and AQUA MODIS data. Remote Sens. 7, 8728–8756 (2015).

 32. Laskin, D. N. Montaghi, A. & McDermid, G. J. An open-source method of 
constructing cloud-free composites of forest understory temperature using 
MODIS. Remote Sens. Lett. 8, 165–174 (2017).

 33. Metz, M., Rocchini, D. & Neteler, M. Surface temperatures at the continental 
scale: tracking changes with remote sensing at unprecedented detail. Remote 
Sens. 6, 3822–3840 (2014).

 34. Thomson, A. M. et al. RCP4.5: a pathway for stabilization of radiative forcing 
by 2100. Climatic Change 109, 77 (2011).

 35. Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation 
and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40,  
677–697 (2009).

 36. Parmesan, C. Influences of species, latitudes and methodologies on estimates 
of phenological response to global warming. Glob. Change Biol. 13, 
1860–1872 (2007).

 37. Crimmins, T. M., Crimmins, M. A., Gerst, K. L., Rosemartin, A. H. & 
Weltzin, J. F. USA National Phenology Network’s volunteer-contributed 
observations yield predictive models of phenological transitions. PLoS ONE 
12, e0182919 (2017).

 38. Melaas, E. K., Friedl, M. A. & Richardson, A. D. Multiscale modeling of 
spring phenology across deciduous forests in the eastern United States.  
Glob. Change Biol. 22, 792–805 (2016).

 39. Izquierdo-Verdiguier, E., Zurita-Milla, R., Ault, T. R. & Schwartz, M. D. 
Development and analysis of spring plant phenology products: 36 years of 
1-km grids over the conterminous US. Agric. For. Meteorol. 262, 34–41 (2018).

 40. Primack, R. B. & Miller-Rushing, A. J. Broadening the study of phenology 
and climate change. New Phytol. 191, 307–309 (2011).

 41. Yu, R., Schwartz, M. D., Donnelly, A. & Liang, L. An observation-based 
progression modeling approach to spring and autumn deciduous tree 
phenology. Int. J. Biometeorol. 60, 335–349 (2016).

 42. Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is 
affected by the timing of spring phenology: implications for predictive 
models. Glob. Change Biol. 21, 2634–2641 (2015).

 43. Liang, L., Schwartz, M. D. & Fei, S. Photographic assessment of temperate 
forest understory phenology in relation to springtime meteorological drivers. 
Int. J. Biometeorol. 56, 343–355 (2012).

 44. Zhang, F., Zhang, L. W., Shi, J. J. & Huang, J. F. Soil moisture monitoring 
based on land surface temperature-vegetation index space derived from 
MODIS data. Pedosphere 24, 450–460 (2014).

 45. Mendelsohn, R. et al. The ecosystem impacts of severe warming. Am. Econ. 
Rev. 106, 612–614 (2016).

 46. Stenset, N. E. et al. Seasonal and annual variation in the diet of brown bears 
Ursus arctos in the boreal forest of southcentral Sweden. Wildlife Biol. 22, 
107–116 (2016).

 47. Deacy, W. W. et al. Phenological synchronization disrupts trophic interactions 
between Kodiak brown bears and salmon. Proc. Natl Acad. Sci. USA 114, 
10432–10437 (2017).

 48. Kug, J.-S. et al. Two distinct influences of Arctic warming on cold winters 
over North America and East Asia. Nat. Geosci. 8, 759–762 (2015).

 49. Harsch, M. A. et al. Moving forward: insights and applications of moving-
habitat models for climate change ecology. J. Ecol. 105, 1169–1181 (2017).

 50. Wan, Z. New refinements and validation of the collection-6 MODIS land-surface 
temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).

Acknowledgements
The authors thank Alberta Innovates Biosolutions, the many partners of the Foothills 
Research Institute Grizzly Bear programme and programme lead G. Stenhouse for their 
generous funding and logistical support. Further thanks go to J. Woosaree, J. Newman 
and the staff at InnoTech Alberta for facilitating the growth-chamber experiments;  
R. Snyder for input on deriving base temperatures; and the NASA LP DAAC for access 
to the MODIS LST products. Additional funding support was provided by the Natural 
Sciences and Engineering Research Council of Canada (NSERC) through a Discovery 
Grant to G.J.M., Alberta Innovates, the University of Calgary and the Vanier Canada 
Graduate Scholarships Programme.

NATuRE CLiMATE ChANGE | VOL 9 | MAY 2019 | 419–425 | www.nature.com/natureclimatechange424

https://doi.org/10.1038/s41558-019-0454-4
https://doi.org/10.1038/s41558-019-0454-4
http://www.nature.com/natureclimatechange


ArticlesNATure ClimATe ChANge

Author contributions
D.N.L., G.J.M., S.E.N. and S.J.M. conceived the study design. G.J.M., S.E.N. and S.J.M. 
supervised the analysis. D.N.L performed the data collection and experiments. S.E.N. 
and D.N.L developed the statistical analysis. D.R.R. produced the SDMs and downscaled 
the RCP4.5 anomaly surface. A.M. wrote the code for automating the MODIS LST image 
processing and analysis and D.N.L. wrote the manuscript. All authors contributed to 
manuscript editing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41558-019-0454-4.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to D.N.L.

Journal peer review information: Nature Climate Change thanks Eric Post and the other 
anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

NATuRE CLiMATE ChANGE | VOL 9 | MAY 2019 | 419–425 | www.nature.com/natureclimatechange 425

https://doi.org/10.1038/s41558-019-0454-4
https://doi.org/10.1038/s41558-019-0454-4
http://www.nature.com/reprints
http://www.nature.com/natureclimatechange


Articles NATure ClimATe ChANge

Methods
Overview. The phenology mapping framework comprises several methodological 
components which are described in detail in the following subsections 
(Supplementary Fig. 1). The first component encompasses the understory air-
temperature modelling that bridges the gap between canopy-top observations 
of MODIS LST and underlying air temperatures (Tust). The next component 
works to produce the present-day phenology maps by extending the plot-scale 
Tust estimates across the landscape. The resulting landscape-scale Tust image stack 
is transformed into daily phenology maps by summing the seasonal thermal 
accumulation (AGDD) of each image pixel. AGDD is the thermal energy 
required to physiologically transition from one phenophase to the next. The 
final methodological component forecasts the 2080s phenology by modifying 
the present-day phenology maps using a downscaled regional RCP4.5 anomaly 
estimated from a multi-model ensemble from the fifth phase of the Coupled Model 
Intercomparison Project (CMIP5)51. In essence, the anomaly is integrated into the 
present-day Tust maps to project the effects of climate change onto existing patterns 
of understory phenology. This modelled forecast was contrasted with experimental 
warming of S. canadensis to determine a calculable phenological response of the 
target species to an end-of-century scenario.

In situ phenology and temperature observations. A digital camera network of 85 
Wingscapes PlantCams was distributed in 45 forested plots throughout the study 
area over two seasons in 2011 and 2012. Within each plot, at least one plant was 
identified and imaged daily at solar noon by one or two cameras. S. canadensis 
was selected as the focal species because of its widespread distribution, visually 
distinct phenophases and critical nutritional importance for vertebrates, including 
threatened populations of grizzly bears. Observations were made of the structural–
physical reproductive phenology and they were assigned a discrete designation 
based on the current stage of development. The phenophases were based on those 
developed by Dierschke52, but were modified to better suit the purposes of this 
framework. Sub-canopy air temperature accumulations were recorded at hourly 
intervals (error no greater than ±0.5 °C) using Thermochron temperature loggers 
(Maxim Integrated Products) placed within solar radiation shields 1 m above 
ground, the approximate height of shrubby vegetation. Twenty-nine of the 45 plots 
were 250 m × 250 m (6.25 ha) in size to approximate the resolution of the thermal 
satellite imagery21. These plots were located within large homogeneous forest 
stands with four additional gridded sensors to record average Tust within the stand. 
Field visits were made by personnel at intervals <10 d to corroborate the camera 
imagery and to make phenological observations of the surrounding 6.25 ha plots 
along two stratified random 250 m sample transects. We used error matrices53 to 
evaluate the level of agreement between the photo- and field-derived phenophases. 
The reference observations were those identified by personnel in the field, to 
which the camera images were then matched by date. A weighted kappa statistic54 
was calculated to evaluate the strength of agreement between the two methods of 
observation20. There was no significant difference between phenophases observed 
from a solitary camera–plant pairing and the other S. canadensis plants throughout 
the broader study plot (z = 0.042, P = 0.996). This result suggests that there may be 
little benefit in observing more than a single plant to approximate the phenology of 
a region up to 6.25 ha or potentially larger. The broader spatial extent of these plots 
corresponds with the areal unit scale of the satellite image pixels, and was the initial 
step in coupling the phenology of individual plants to the broader landscape.

Estimating understory temperature from MODIS LST. Generalized linear 
models (GLMs) were derived in STATA 13 statistical software55 to estimate 
instantaneous values of Tust at the plot scale. Random effects were used to offset bias 
from repeated temperature observations within single sites, and candidate-model 
selection was performed using Akaike’s information criterion. The daily 1 km LST 
product is collected by NASA’s EOS sun-synchronous, near-polar orbiting Terra 
and Aqua satellites. With Aqua in an ascending orbit and Terra in a descending 
orbit, the two platforms deliver a total of four daily equatorial crossings at 13:30, 
01:30, 10:30 and 22:30 (local solar time)56. We used the following two LST image 
products: Terra MOD11A1 and Aqua MYD11A1. In addition to MODIS LST, 
Julian day (quadratic polynomial) was used to express growing-season duration29,57. 
Environmental lapse rate varies substantially with altitude, so elevation was added 
as a covariate derived from a 10 m photogrammetrically compiled digital elevation 
model58. Forest and overstory covariates included canopy closure (%), forest-stand 
type (characterized as the proportion of conifer trees) and a suite of LiDAR-derived 
canopy metrics. Canopy closure and the proportion of conifer were measured in 
situ every 50 m (14 sub-plots) along two 250 m stratified-random linear transects 
in the 6.25 ha plots. Canopy closure was measured during leaf-on conditions using 
five vertical hemispherical photographs at each sub-plot and later processed with 
WinSCANOPY software59. A representative sample of tree species was obtained 
using a 360° sweep of each sub-plot using a wedge prism relascope. Laskin et al.32 
developed a procedure to extend the instantaneous estimates of plot-scale Tust into 
spatially continuous, cloud-free maps of daily average Tust at the landscape scale. 
GLMs were again used to estimate daily average Tust from each of the four daily 
MODIS overpasses (to within 1.5 °C, R2 ≈ 0.87), first at the plot scale to acquire 
the model coefficients and then extending these models across the 125,000 km2 
study area. All of the model covariates were previously modelled at 30 m Landsat 

resolution using nearly 1,000 ground-truth locations60, enabling the translation 
of the models to wall-to-wall estimates of daily average Tust. During this step, the 
estimates of Tust were spatially enhanced to 250 m using the higher-resolution 
covariate rasters (that is, elevation) to augment the 1 km LST data61 and match the 
areal-unit scale of the in situ measurements. The four daily estimations of average 
Tust at 250-m resolution were then stacked and merged into a single daily image 
to increase the cloud-free coverage, averaging Tust values wherever there was any 
overlap31. The remaining cloud gaps were filled with Gaussian-weighted temporal 
interpolation using clear-sky values from ±7 d preceding and following the current 
image date33,62. A cloudiness coefficient was used to offset the bias of estimating 
higher temperatures within cloud gaps resulting from the use of temporally 
adjacent clear-sky (warmer) pixels. The final daily Tust averages were compared 
to randomly selected daily in situ averages during all weather conditions (20% 
proportion of the training data). The Tust models were also compared against air 
temperature (Tair) estimates in a non-forested validation plot (6.25 ha) by recording 
in situ air temperature over two seasons at the centre of a broad expanse (2,700 km2)  
of native grassland, which provided near-perfect homogeneous land cover. We 
used an identical sample design to train the null model for solely LST and date. Air 
temperature estimates in the validation plot had an average root-mean-square error 
increase of 2 °C compared with the forest plots. This result supports the notion that 
estimates of Tair using LST are generally more accurate over forest cover63, while 
also demonstrating the efficacy of the framework beyond forests.

GDDs and developmental-threshold temperatures. There are a variety of 
techniques for calculating GDDs64,65, but the principal form of the equation  
is as follows66:
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where Tmax and Tmin are the temperature extremes reached in a single 24-h period, 
and tb is the base temperature, or minimum physiological temperature threshold. 
For this study, threshold temperatures were derived using a statistical approach 
recommended by Yang et al.22 called the regression method, originally developed 
by Hoover14. A statistical-threshold temperature is derived by minimizing the 
standard deviation in AGDD between phenophases over a series of observations. 
The regression method was used to obtain the developmental threshold using 
observations from across the study area and within the growth chambers. The 
methodology used by Yang et al.22, as described by Snyder et al.18, begins by 
defining one season of phenological observations of a single plant as a case,  
and the total GDD, or [fi(tb)], as a function of the threshold temperature (tb) for  
the ith case as:
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here, Ti is the sum of the daily mean temperatures divided by the number of days 
in the ith case (di), and tb is the base threshold temperature. The resulting GDD 
values are plotted against the daily mean temperatures during the corresponding 
phenophases. The threshold value is found by iterating until the slope of the 
regression equals zero and solving for tb:
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The reproductive temperature threshold for S. canadensis was calculated to be 
0 °C ± 0.6 °C in both the field and growth-chamber case observations. The GDD 
accumulations were then quantified for each discrete phenophase start date in the 
seasonal progression.

Present-day phenology maps. The baseline year 2012 was selected to characterize 
phenological timing within the study area and represents the present-day climate 
scenario. Of the two years of field observations, 2012 was the closest in temperature 
to the 30-year study-area average (February-to-October average to within 0.33 °C). 
This was confirmed using gridded monthly temperature from the National 
Oceanographic and Atmospheric Administration (NOAA) North American 
Regional Reanalysis dataset (NARR). Daily average Tust maps were produced from 
the beginning of February, well before any location reached average temperatures 
above freezing, until the end of October. The production of the phenology maps 
was semi-automated using scripts developed in the statistical programming 
language R67 and the Python 2.7 environment68. The GDD equation (equation (1)) 
was applied to each Tust image in the raster stack, producing an output of the daily 
accumulations above the threshold temperature. The imagery was then classified 
on the basis of the AGDD required to begin each phenophase. The final product 
was a time series of the complete phenological progression of S. canadensis across 
the study area. The AGDD requirements were calculated from field observations 
from 2011 and validated using independent observations made at 16 new plots in 
2012. The maps were validated by calculating the MAE between the map-predicted 
start date of each phenophase and the actual start date observed at each individual 
plant on the ground (plot scale). A paired t-test was used to determine whether 
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there was a significant difference between the map predictions and observed in situ 
phenophases.

Future phenology maps. Future phenology projections were based on the RCP4.5 
scenario of IPCC AR5 for the 2080s decadal average69. Rather than selecting a 
single general circulation model (GCM) projection, which could produce bias, 
we used an ensemble average of 15 individual GCM projections from the CMIP5: 
CSIRO-ACCESS1.0, CCCMA-CanESM2, NCAR-CCSM4, NCAR-CESM1-
CAM5, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, GISS-E2R, HadGEM2-ES, 
INM-CM4, IPSL-CM5S-MR, MIROC5, MIROC-ESM-LR, MPI-ESM-LR and 
MRI-CGCM3. The ensemble output was averaged and downscaled to a 1-km 
resolution anomaly surface for the study area ranging between +3.1 °C and +3.4 °C 
(mean: +3.29 °C) using ClimateNA v.5.470. These values were added to each of the 
daily average Tust time-series images in the stack to create a corresponding daily 
future temperature scenario within the study area. The AGDD were recalculated 
using the same developmental base temperature (tb = 0 °C), and reclassified using 
the same GDD requirements.

Species-distribution models. Species-distribution models (SDMs) were used 
both to characterize present-day habitat of S. canadensis (1961–1990) and to 
project the species’ range under future climate change scenario RCP4.5 (2080s). 
The SDMs were used to spatially mask the corresponding phenology maps. 
SDM development followed the methodology outlined in Roberts et al.71, with 
some data and methodology updates. Models were trained on 7,088 species-
survey plots with covariates that included present-day and future climate data 
obtained from ClimateNA v.5.4 (including the RCP4.5 GCM ensemble described 
above) and a selection of ten biologically relevant annual and seasonal climate 
variables (assessed for collinearity): mean annual temperature (°C), average 
summer temperature (°C), average winter temperature (°C), extreme minimum 
temperature (°C), total summer precipitation (mm), total winter precipitation 
(mm), Hargreave’s annual climate moisture deficit (mm), Hargreave’s summer 
climate moisture deficit (mm), number of degree days above 5 °C (days) and 
number of frost-free days (days). For our variable definitions, summer is defined 
as the months of June, July and August, and winter is defined as the months of 
December, January and February. We also included three topo-edaphic variables as 
predictors: compound topographic index (unitless), topographic heat-load index 
(unitless), and topographic radiation aspect (unitless). Last, we included a remotely 
sensed measure of forest-crown closure (%). Whereas most topo-edaphic variables 
remain constant over time, crown closure may change with changing climates. 
To achieve values for the future we projected crown closure using a random 
forest-modelling approach, trained with remotely sensed crown-closure values 
and all 13 climate and topo-edaphic variables listed above. We then projected 
crown-closure values for the 1961–1990 normal period as well as for the 2080s 
using the same RCP4.5 ensemble GCM projection used in the SDM. We employed 
an ensemble SDM approach using the biomod2 package for R72 to create several 
SDMs using eight individual approaches trained on 7,088 modern species-survey 
plots: GLMs, generalized additive models (GAMs), generalized boosted models 
(GBMs), classification tree analysis (CTA), artificial neural networks (ANN), 
multivariate adaptive regression splines (MARS), random forest (RF) and Phillips’ 
maximum entropy (MAXENT). From these individual models, a single ensemble 
projection was created by averaging the individual model outputs. The ensemble 
models generated probability-of-presence (between 0 and 1) values across the 
study area at a resolution of 300 m × 300 m. Probability-of-presence surfaces were 
subsequently converted to binary maps of S. canadensis presence and absence 
using a conservative receiver-operating characteristic (area under curve, AUC) 
threshold of 3.25. Ensemble SDM projections (mean projections of individual 
SDM approaches) were evaluated using the AUC via two k-fold cross-validations. 
The first incorporated 17 random data splits (that is, 17 folds), whereas the second 
incorporated spatially blocked data splits of approximately 100 km × 100 km 
each. Incorporating spatial blocks into cross-validations addresses residual 
autocorrelation as well as potential model overfit to underlying data structures, 
both of which can result in overly optimistic validations73. AUC for the random 
and blocked cross-validations were 0.82 and 0.78, respectively. In the future 
models, it is assumed that S. canadensis is not in a state of transition or adaptation 
to novel climatic environments and that observed patterns reflect the species’ full 
biotic potential by occupying all environmentally suitable areas74.

Growth-chamber observations. We used experimental warming to observe shifts 
in the timing of reproductive phenology in S. canadensis75–78. Considering that 
climate change affects taxa in different ways7, we directly tested the sensitivity of  
S. canadensis to warming to evaluate the projected advances observed in the future 
phenology maps. Experiments were conducted at an agricultural research facility 
(Innotech Alberta) using eight fully enclosed Conviron E15 climate-controlled 
growth chambers with light intensity and photoperiod control and refrigeration 
to simulate night and early-season conditions. Two scenarios were reproduced 
in the chambers: a present-day control (2012) and the end-of-century RCP4.5 
scenario (2080s). The present-day temperature profile was established on a 30-year 
average at an Environment Canada weather station located near the centre of the 
study area (53° 14′ N, 117° 49′ W). The future warming profile was based on the 

downscaled regional RCP4.5 anomaly with a mean of +3.3 °C. AR5 projections 
for western Canada are much higher than the global average, with a maximum 
difference of +4 °C (ref. 79). Two eight-month observation ‘seasons’ were enacted 
using 20 adult plants in 2013 and 26 in 2014, proportionately divided and assigned 
randomly into present-day control and RCP4.5 scenario chambers. Each plant was 
monitored daily by a PlantCam and additional intermittent DSLR imagery. Four 
visually distinct phenophases were selected for observation to maximize temporal 
precision and bookend the critical reproductive phenology of this species: 
first flower, full bloom, first ripe and fully ripe. The developmental variance 
between chambers was calculated as the mean difference in days for each of these 
phenophases. To ensure fruit production, male plants in each chamber were used 
to hand-pollinate flowers in lieu of insects. Pollination took place whenever a plant 
attained full bloom (>90% of flowers visible) in both the control and treatment 
chambers to limit temporal bias in the subsequent phenophases. All plants were 
simultaneously cold-stratified for five months preceding chamber observations at a 
constant temperature of −5 °C to simulate winter. Lighting intensity was calibrated 
and kept constant within the chambers with diurnal and seasonal photoperiod 
corresponding to mid-latitude of the study area80. Moisture levels and watering 
schedules were also kept as consistent as possible. There were no adjustments made 
for RCP4.5 precipitation forecasts since end-of-century projections are mixed 
for southwestern Alberta with no statistically significant trend in the composite 
models79.

Data availability
Daily MODIS LST imagery products are available from the NASA Land Processes 
Distributed Active Archive Center (LP DAAC, http://lpdaac.usgs.gov). The data 
that support the findings of this study are available from the corresponding author 
on reasonable request.

Code availability
The computer code and algorithms generated during this study are available from 
the corresponding author on reasonable request.
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